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Abstract—The increasing complexity of artificial intelligence
(AI) models poses a significant challenge for individuals and
organizations without sufficient computing resources to train
them. While cloud-based training services can offer a solution,
they require sharing sensitive data with untrusted parties, posing
risks to data privacy. To address this challenge, we explore the
combination of distributed training and homomorphic encryption
to parallelize the training process on encrypted data. We utilize
the CKKS homomorphic encryption scheme to develop a frame-
work that can train comparably accurate AI models in less time
than other homomorphically encrypted training solutions. Our
experiments demonstrate reduced total runtime for homomor-
phically encrypted model training while maintaining competitive
classification accuracy for the MNIST handwritten digits dataset,
a well-known benchmarking dataset for machine learning. Our
framework brings homomorphic encryption closer to becoming a
practical data privacy solution for small stakeholders who cannot
afford to compromise on security.

Index Terms—distributed learning, homomorphic encryption,
privacy-preserving machine learning

I. INTRODUCTION

Artificial intelligence (AI) and its models play a critical

role in various technologies today, including computer vision,

search recommendations, and autonomous vehicles. However,

the growing complexity of these models necessitates more

computational power to train them. As a result, small busi-

nesses and individuals without access to dedicated data centers

cannot match the scale of tech companies, leading to a higher

cost of entry. Cloud computing services, such as Amazon

Web Services (AWS) and Google Cloud Platform (GCP), have

emerged to fill this gap by providing outsourced computa-

tional power. These platforms allow for the use of distributed

learning, a machine learning approach that parallelizes training

over a large number of machines. This method offers several

advantages over traditional single-machine training, including

scalability, efficiency, and cost-effectiveness [1].

While distributed learning has become popular, it presents

unique challenges. For example, model training outside one’s

own machine and network can expose sensitive data to mali-

cious actors and lead to security breaches. Factors like medical

privacy laws and personally identifiable information may also

render a dataset confidential. These data security and privacy

concerns have resulted in over a third of organizations stop-

ping or slowing down cloud service adoption [2]. Therefore,

securing sensitive information before using such datasets for

model training in a distributed learning system is crucial.

Several solutions have been proposed to address data privacy

concerns in distributed learning, such as federated learning [3],

differential privacy [4], and cryptographic protocols like secure

multiparty computation [5] and homomorphic encryption [6].

Federated learning and secure multiparty computation are ef-

fective for collaborative training, where sensitive data remains

on the host machine throughout the process. However, they do

not alleviate the computational burden on individuals wanting

to train their models. In contrast, differential privacy and other

obfuscation techniques allow the data to leave the host for

outsourced training. However, the level of security provided by

these techniques (e.g., adding noise to the dataset) is inversely

proportional to their usability.

Homomorphic encryption is a promising solution for en-

suring data privacy in distributed learning. Unlike traditional

encryption schemes, homomorphic encryption allows basic

arithmetic operations to be performed directly on encrypted

data, eliminating the need for decryption and re-encryption.

However, homomorphic encryption is known for its heavy

computational overhead, hindering its applicability in real-

world scenarios [7]. This overhead can increase training run-

time by several orders of magnitude on a single machine.

To address these challenges, we propose a secure dis-

tributed learning framework that combines the advantages

of distributed learning and homomorphic encryption while

mitigating the drawbacks of each. Our framework enables

better performance over single-machine training using ho-

momorphic encryption and alleviates data privacy concerns

related to distributed learning. Specifically, we use CKKS
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[8], a homomorphic encryption scheme that operates on real

numbers, to secure sensitive datasets before model training.

This allows us to encrypt datasets without converting data into

fixed-point integers. The main contributions of our project are

as follows:

• We design and build a distributed learning framework

that uses homomorphic encryption to secure sensitive

data, allowing users to train AI models securely with no

perceivable loss of model accuracy.

• We demonstrate the potential speedup achieved by uti-

lizing distributed learning techniques to distribute the

workload of homomorphic encryption.

• We discuss how we design the loss evaluation method to

mitigate a chosen ciphertext attack on result vectors.

Our experimental evaluation shows competitive accuracy re-

sults on the MNIST handwritten digits classification problem

[9], achieving a classification accuracy comparable to an

identical model trained using a similar encryption approach

[10]. Moreover, our runtime tests indicate that our framework

significantly improves as the number of machines increases,

reducing the training time from several days to hours. These

experiments also reveal that network overhead takes up a

small fraction of the total runtime, suggesting the potential for

further investigation and advancements in networked solutions.

The remainder of this paper is organized as follows. Section

II reviews prior literature on data privacy in distributed learn-

ing and various existing approaches to address the problem. In

Section III, we provide an overview of the methodology and

framework of our solution, including its design philosophies

and key components. Section IV provides detailed specifica-

tions of the framework, including information on the actors,

algorithm specifics, and dataflow. Section V outlines the

experimental evaluation of our framework, including the test

case, inputs, and parameters. Section VI presents the results of

our experiments and compares our work to related research.

In Section VII, we discuss the challenges encountered and the

insights gained from the project. Finally, in Section VIII, we

conclude the paper with our final thoughts and highlight areas

for future work.

II. RELATED WORK

Data privacy in distributed learning has received significant

attention in recent years. The two main categories of tech-

niques used to secure data in distributed learning systems are

system-level architectures with built-in privacy assurances and

data obfuscation algorithms. Examples of the first category

include federated learning platforms and secure multiparty

computation frameworks, while the second category includes

differential privacy and homomorphic encryption.

Federated learning systems, as introduced by McMahan et

al. [3], enable the training of a global model using local data

from each party without transferring the raw data to a central

server. This decentralized approach to data training grants

strong data privacy assurances for data owners participating

in the algorithm, making it useful for machine learning on

sensitive data [11]. Several papers have expanded on the

security of federated learning by incorporating data obfusca-

tion techniques, such as differential privacy and homomorphic

encryption. For example, Geyer et al. combined federated

learning with differential privacy, creating a framework that

adds noise to client data based on the sensitivity of the

data [12]. BatchCrypt by Zhang et al. used homomorphic

encryption to encrypt gradients instead of raw data, thereby

preventing information leaks due to gradient analysis on the

server side [13]. However, these systems are designed for

training a centralized model on decentralized data, which is

different from our project’s use case, where both data and

model are centralized.

Differential privacy is another technique used to protect sen-

sitive information by obfuscating the actual dataset. It achieves

this by adding random noise to queries, preventing the iden-

tification of individual data points. Abadi et al. demonstrated

the usage of differential privacy in deep learning, showing

how it can be applied to protect gradients [4]. Wang et al.

applied noise to input features based on their importance, thus

minimizing the impact on model utility when using differential

privacy for model training [14]. Because differential privacy

is much less computationally intensive than homomorphic

encryption, it is also a popular choice for federated learning,

as seen in Geyer et al. and Hu et al.’s federated learning

frameworks [12], [15]. However, there is a distinct tradeoff

between the level of privacy and model accuracy in machine

learning when using differential privacy. For datasets that

include images and other perceivable patterns, considerable

noise may be required to obfuscate information properly, at

which point the accuracy of the AI model suffers as well [16].

Several deep learning systems using homomorphic encryp-

tion have been proposed [17], [18], [19]. Al Badawi et al. pre-

sented a GPU-accelerated homomorphic convolutional neural

network (HCNN) that employed the BFV scheme [17]. Al-

though this HCNN reported a 5.16-second inference time with

99% accuracy on the MNIST dataset, the authors noted a secu-

rity level greater than 80 bits, which falls on the lower end for

secure encryption algorithms. Ishiyama et al.’s convolutional

neural network using homomorphic encryption introduced the

use of ReLU (rectified linear units) [20], [21] and Swish [22]

approximations for activation functions, allowing for the direct

use of the CKKS scheme in model inference [18]. Sphinx,

a deep learning system developed by Tian et al., adopted a

client/server architecture designed to safeguard the privacy of

AI training in networked environments [23]. Recognizing the

potential threats to data privacy from network snooping or

intrusive servers, Sphinx combined homomorphic encryption

with differential privacy to protect data during the training

and inference phases. However, Sphinx’s implementation did

not leverage a distributed learning network, which restricts the

scalability of their solution. Prior literature has mainly focused

on the inference stage of AI model deployment. Research

into homomorphic encryption in model training is sparse,

with Nandakumar et al.’s work on neural network training

on encrypted data being a notable example [10]. However,

utilizing encryption through the entire process can negatively
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affect total runtime due to the computational cost associated

with homomorphic encryption.

III. FRAMEWORK DESIGN

We aim to ensure data privacy in distributed learning

through a secure distributed learning framework. Our approach

leverages homomorphic encryption to protect sensitive data.

This section will cover our design goals, requirements, and

the technology stack used.

A. Design Goals

Our framework addresses privacy concerns arising from

distributed training. With data stored and processed outside

a host’s scope, data leakage is a significant risk, particularly

in a crowd-sourced computing environment. We introduce a

distributed training paradigm that utilizes homomorphic en-

cryption to encrypt datasets at the host machine before distri-

bution and training to mitigate this privacy concern. However,

homomorphic encryption operations can be computationally

expensive. Therefore, our algorithm employs a hybrid solution

that reduces computational overhead at the cost of increased

network traffic.

In addition to security, our design goals include usability,

accuracy, and runtime performance. We aim to train models

with accuracy comparable to traditional single-machine solu-

tions while outperforming encrypted single-machine training

solutions in runtime. To ensure security, no actor outside the

data owner should have access to any plaintext part of the

dataset.

B. Strategies for Distributed Learning

To develop a secure distributed training framework, we

require a robust machine learning framework that supports

granular changes to the training process to accommodate ho-

momorphic encryption. While both PyTorch1 and TensorFlow2

are sound choices, we opt for TensorFlow due to its extensive

support for distributed training.

Distributed learning requires special strategies, as regular

machine learning algorithms do not work in this context. These

strategies include:

• Data parallelism: In data parallelism, the dataset is di-

vided into multiple parts, and each machine processes

a different part simultaneously, with the gradients being

averaged across all machines to update the model param-

eters.

• Model parallelism: Model parallelism involves processing

different parts of the model on different machines, with

each machine computing a portion of the model and

sending the intermediate results to the next machine in

the pipeline.

• Federated learning: Federated learning is a distributed

learning strategy where the data remains on devices and

is trained locally, while only model updates are sent to a

central server for aggregation.

1https://pytorch.org/
2https://www.tensorflow.org/

In our specific use case, a single host owns both the data and

model, rendering federated learning unsuitable. In addition,

the usage of homomorphic encryption complicates model

parallelism, thus making data parallelism the optimal option

for our proposed framework. We implement data parallelism

by dividing the encrypted dataset among participating workers

and allowing them to work on a portion of the data. The server

overseeing the workers receives the gradients computed by

each worker, combines and averages them, and then dispatches

model updates to each worker.

C. Homomorphic Encryption

Homomorphic encryption plays a vital role in our system

design, allowing computations to be performed on encrypted

data without the need for decryption. This feature enables

workers to train on sensitive data without the risk of exposure.

Homomorphic encryption was first proposed in 1978 by Rivest

et al. [6] and has since undergone numerous advancements and

iterations. Today, we have partially homomorphic encryption,

somewhat-homomorphic encryption, and fully homomorphic

encryption, with the latter being the most comprehensive.

The most commonly used fully homomorphic encryption

(FHE) schemes for machine learning are BGV [24] and BFV

[25], [26], which use bootstrapping to convert from somewhat-

homomorphic encryption to fully homomorphic encryption.

Recently, the CKKS [8] scheme has gained popularity due

to its efficiency and ability to perform real number additions

and multiplications, albeit with some approximation errors.

However, AI models are designed to tolerate some errors in

their computations, which is why we chose to use CKKS in

our system.

We implemented CKKS using the TenSEAL library [27],

which is based on Microsoft’s SEAL library for homomorphic

encryption [28]. TenSEAL supports various configurations and

parameters that can affect the security and efficiency of the

system. The two CKKS parameters we considered are the

polynomial modulus degree and the coefficient modulus sizes.

The polynomial modulus degree affects the size of ciphertext

elements, the security level, and the computational overhead.

The coefficient modulus sizes are a list of binary sizes used by

TenSEAL to generate coefficient modulo primes. The length

of this list determines the maximum number of rescaling

operations performed on ciphertexts.

IV. SYSTEM SPECIFICATIONS

Unlike traditional distributed learning systems, our proposed

solution utilizes a hybrid structure where the host remains an

active participant even after the data and model have been

sent for training. Workers only use the encrypted dataset for

the forward pass, resulting in an encrypted result vector that is

sent back to the host. The host handles the decryption of the

result vector, comparison to target values, and calculation of

the loss function to prevent workers from seeing the plaintext

labels for the dataset.

This approach reduces the computational toll homomorphic

encryption takes on the worker, as only the forward pass
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requires homomorphic operations, allowing us to train AI

models using the same encrypted inferences used in related

papers. A high-level view of the dataflow between users and

actors in our system is shown in Figure 1.

User/
Host Server

Worker Pool

Trained Model

Encrypted Dataset, 
Model, Public 

Encryption Context

Gradient Updates

Partial Encrypted 
Dataset, Model, 

Public Encryption 
Context

Fig. 1. Dataflow of the framework

A. Host (User)
A host user is a primary actor in our proposed framework

who owns and seeks to protect their sensitive datasets. Host

users may have several reasons for safeguarding their datasets,

including complying with medical privacy laws and protecting

personally identifiable information. Sometimes, a host user

may not possess the computational resources needed to se-

curely train their model in-house, necessitating the use of a

secure framework like the one we propose.
Although the system handles training, a host is still respon-

sible for data pre-processing, dataset encryption, and model

parameter configuration. These processes follow the standard

protocol for typical model training. Once the dataset and

model are prepared, the dataset is encrypted using CKKS

before being packaged with the model and sent to the server

along with the public encryption context. After sending the

encrypted dataset and model to the server, the host remains an

active participant in the algorithm and responds to loss calcula-

tion requests from workers. These loss calculation requests are

small and require a single homomorphic decryption per sample

every epoch. The host compares the decrypted prediction with

the expected result and generates a loss delta, which is sent

back to the worker for backpropagation. Algorithm 1 shows

the pseudocode for the algorithm run on the host.

B. Server (Worker Manager)
A server manages communication between the worker pool

and host, directs the dataflow between each actor, and acts

Algorithm 1 The Host Process

Require: Training dataset features X and labels Y with size

N , Trainable AI model M , Batch size B, Epochs E,

Activation function F
Ensure: Trained AI model T

Preprocess dataset X
Create encryption context C
Create public context C ′

Encrypted dataset X ′ = Encrypt X with C
Create training package P = {X ′, N,C ′,M,B,E}
Connect to server

Send P to server

while Training is not finished do
Receive loss calculation package R from server

Calculate loss result package L = F (Y,R)
Send L to server

end while
Receive final model T from server

as the parameter server for the system. The server receives

training packages from the host that contains an encrypted

dataset, model, and public encryption context. It then repack-

ages them into a smaller package based on the number of

active workers. This new package is then sent to participating

workers for training.

The server stays active during training and is ready to

accept both loss calculation requests and gradient updates

from workers. It receives partial gradients from each worker,

aggregates and combines them into a full model update, and

sends the update back to each worker following every batch.

Once all epochs are completed, the server sends the final model

update back to the host. Algorithm 2 shows how the server

operates.

C. Worker

The process executed by workers is outlined in Algorithm

3. Workers perform forward passes and backpropagation using

encrypted data. Following each batch’s forward pass, a worker

sends a loss calculation request with the result vector to the

host. The host calculates the loss and sends it back to the

worker for backpropagation, preventing a malicious worker

from performing a chosen ciphertext attack on the host. Using

the GradientTape object in TensorFlow, workers calculate

gradients for each batch with respect to the loss value. These

gradients are then sent to the server, which aggregates and

combines them into a full model update and sends the model

update back to each worker following every batch.

V. EVALUATION PLAN

We conducted experiments to evaluate our proposed frame-

work. This section will describe the test environment, dataset,

training model architecture, CKKS parameters, and testing

process used in our experiments.
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Algorithm 2 The Server Process

Require: Number of workers W

Open communication thread for workers

Open communication thread for host

Connect to workers

Connect to host

Receive training package P from host

Unpack P = {X ′, N,C ′,M,B,E}
for each connected worker do

Create training package K = {X ′/W,N/W,C ′,M,B,

E}
Send K to worker

while Training is not finished do
Receive loss calculation package R from worker

Send R to host

Receive loss result package L from host

Send L to worker

Receive gradient update G from workers

Calculate model update M ′ = Apply average G to M
Send M ′ to worker

end while
end for
Send final model T to host

Algorithm 3 The Worker Process

Connect to server

Receive K from server

Unpack K = {X ′/W,N/W,C ′,M,B,E}
for each epoch E do

for each batch in (X ′/W ) do
Perform forward pass on M with B elements of

(X ′/W ) using C ′

Package result vector into loss calculation package R
Send R to server

Receive L from server

Perform back-propagation on M with L
Calculate gradient update G
Send G to server

if Training is not finished then
Receive model update M ′ from server

Apply M ′ to M
end if

end for
end for

A. Test Environment

We conducted all our tests on Google Colab3, a cloud-

based computing platform designed specifically for machine

learning. We utilized separate instances of custom Google

Compute Engine VMs for the host machine, server, and

workers to emulate a distributed learning environment. These

nodes were configured with the high-memory machine type,

including 16 GB of RAM and two virtual CPUs. To simulate

the use of separate physical machines as workers in our

system, we deployed eight Google Colab instances as workers,

each connected to a separate VM to ensure each worker had

independent computing resources.

B. Dataset

We used the MNIST handwritten digit dataset [9], which

consists of 60,000 training images and 10,000 test images,

each measuring 28 × 28 pixels and labeled with one of the

ten digits (0 to 9). We resized each image to 8 × 8 pixels

using bicubic interpolation and normalized the samples using

a mean of 0.1307 and a standard deviation of 0.3081. These

8 × 8 images are then flattened into a single vector of size

64 to fit the input shape of our model. We trained our model

using only 10,000 samples from the training set, while the

evaluation of the model used 1,000 samples from the test set.

For reference, an example of a pre-processed sample before

flattening can be seen in Figure 2.

Fig. 2. A pre-processed sample from the dataset

C. Training Model Architecture

As shown in Figure 3, the model we used for our training

is a fully connected neural network with an input shape of 64,

two hidden layers with 32 and 16 neurons, respectively, and

an output vector of 10, corresponding to the ten numeric digits

we aimed to predict. This gave us 2,778 trainable weights in

our model.

We utilized a square activation function for each hidden

layer since homomorphic encryption can only support basic

operations. For the loss function, we opted for cross-entropy

3https://colab.research.google.com/
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Input 1
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Input 64

Input Layer Hidden Layers Output Layer

Output 1

Output 10

32 Neurons 16 Neurons64 Inputs 10 Outputs

Fig. 3. Training model architecture

loss as it is best suited for categorization problems. We

randomly initialized the weights and employed the Adam

optimizer [29] with a learning rate of 0.001. With these

parameters, our model performed three homomorphic matrix

multiplications and six regular homomorphic multiplications

per sample.

D. CKKS Parameters

The selection of CKKS parameters relies highly on the

model architecture and the desired security level for the

training process. We required an additional coefficient modulus

element for each homomorphic multiplication operation in the

model. In total, our model performed five total multiplications:

three matrix multiplications from our dense layers and two

multiplications from our square activation functions. There-

fore, we choose the following parameters:

• Polynomial modulus degree: We set the polynomial mod-

ulus degree to 8,192 to accommodate the number of

homomorphic operations performed in our test model.

• Coefficient modulus sizes: We used a 7-element list with a

total of 192 bits to allow our test model to run its forward

pass.

Regarding security, our chosen encryption parameters offer

sufficient protection for the problem. As per the TenSEAL

documentation [27], using a polynomial modulus degree of

8,192 along with a coefficient modulus size of 192 bits is

sufficient for a 128-bit security level, which is deemed satis-

factory by the National Institute of Standards and Technology

[30].

E. Testing Process

After preparing our dataset and model, we proceeded to

run them through our framework. The first step was for the

host to create an encryption context using CKKS that was

suitable for the model we intended to train. The next step was

to encrypt the entire dataset using this context for training

purposes. Finally, we serialized the encrypted dataset, model,

and public encryption context and sent them to the server.

The server unpacked the serialized package and divided the

encrypted dataset into N parts based on the number of active

workers we used for training. The server then initialized an

updated model, serialized it, and sent a training package to

each worker.

Each worker unpacked their training package and began the

training process. First, the worker ran a forward pass for each

batch of samples, creating a batch of encrypted prediction

results. The worker then serialized and sent this batch of

predictions back through the server to the host, who decrypted

the batch and calculated the loss for the entire batch. This loss

was then sent back to the worker, who used it to calculate the

gradient for the batch. The worker sent this gradient back to the

server. After receiving all the gradients from each worker, the

server combined them by taking the average. These combined

gradients were then applied to the model, and the model

update was sent to all workers for the next batch. This process

continued until all batches were finished, resulting in a final

model update after 10 epochs.

The final model update was sent to the host for evaluation

and inference. We measured the framework’s performance by

timing each training run’s total runtime, and the final model’s

accuracy was tested on a sample set of 1,000. We scaled the

number of workers from 1 to 8 for these measurements.

VI. EVALUATION ANALYSIS

We conducted experiments to evaluate our proposed frame-

work based on several key metrics, including total runtime,

network delay, model accuracy, and security level.

A. Evaluation Results
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Fig. 4. Training time w.r.t. the number of workers.

We tested how long it took to train our framework by ad-

justing the number of workers involved in the process. Figure

4 shows the total time, including one-time operations such

as dataset encryption and network overhead. Our framework

significantly improved the training runtime as the number of

workers scaled up. Using a single worker resulted in a training

runtime of over 56.6 hours, with over 55 hours on forward
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passes alone. However, by utilizing more workers, we reduced

the total training time to 8 hours, which is a reduction of over

80% of the total runtime. The computational impact on the

host amounted to 63.3 minutes for encryption and decryption,

after which the server and workers handled the rest.

We also assessed the overall network delay of our system.

The overall network time was approximately 33 minutes in

total across 10 epochs of training, with the majority of the

time spent on transmitting the encrypted dataset. These 33

minutes represents 6.5% of the total training time of our

fastest configuration of 8 workers. The encrypted dataset, when

serialized, has a total size of over 4 gigabytes but only needs

to be transmitted twice in full, with the full set going to the

server and partial sets going to each worker. Loss calculation

requests accounted for a much smaller portion of the network

time as the encrypted results are much smaller than encrypted

inputs. These runtime costs for the host and network remained

fairly constant even as we increased the number of workers.

Figure 5 shows a graph of test accuracy versus the number

of epochs trained. The accuracy of the completed model after

10 epochs evaluated on the test set comes to approximately

95%, indicating a strong prediction ability despite a precision

loss from encryption. Our model converged to 95% by the 5th

epoch, comparable to other state-of-the-art methods.
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Fig. 5. Test model accuracy comparison.

B. Comparison to Prior Work

Our system outperforms the homomorphically encrypted

system described in Nandakumar et al.’s work [10] in terms

of training runtime while achieving a test accuracy of 95%

after 10 epochs, which is comparable to their NN2 model.

Nandakumar et al. reported a 40-minute training time for a

mini-batch of 60 samples in their most optimized configura-

tion. In contrast, our model trains the same-sized batch in just

3 minutes, thanks to our choice of encryption scheme and

corresponding parameters.

Li et al.’s distributed learning framework [31] achieved a

slightly higher classification accuracy of 96% for the MNIST

dataset, with a faster convergence time of 300-400 seconds for

their model. However, it is important to note that our model

uses a fully connected neural network with the full set of labels

from the MNIST dataset, while Li et al.’s work used a linear

model and only two output labels. Additionally, our model

took around 5 epochs to reach a 95% test accuracy, which is

longer than Li et al.’s reported convergence time.

Jiang et al. utilized a homomorphically encrypted model

called E2DM [32] to run inference on the MNIST dataset,

which achieved an amortized inference time of 0.446 sec-

onds per image and a classification accuracy of 98%. Our

experiment prioritized faster runtime and stronger security

level at the cost of some accuracy. We attribute the difference

in model accuracy to their use of a pre-trained model and

a convolutional neural network architecture, which is more

suitable for image classification problems.

The Sphinx deep learning system [23] reports an inference

time of 6 seconds in their evaluation results, but it includes the

time taken to encrypt the sample. To make a fair comparison,

we compared our amortized time against their batched training

time, resulting in an amortized time of 0.78 seconds per

sample. While our model’s accuracy is slightly lower than

Sphinx’s, this difference could be attributed to their use

of a convolutional neural network, whereas we employed a

fully-connected neural network. In terms of communication

overhead, Sphinx exhibits a lower communication cost per

batch compared to our solution. Sphinx’s communication cost

is 18.3 MB per batch of 500 samples, while our solution re-

quires approximately 235 MB. This discrepancy stems from a

fundamental architectural difference. Our framework employs

worker nodes in addition to the client and server nodes used by

Sphinx. This enables our framework to parallelize the training

process across multiple workers, thereby accelerating training

time at the expense of communication time.

While some studies report a 99% accuracy rate for the

MNIST dataset, such as Al Badawi et al. [17] and Ishiyama et

al. [18], they used pre-trained models and focused on inference

accuracy instead of training and validating a model from

scratch. In the case of sufficiently accurate pre-trained models,

the only accuracy loss from homomorphic encryption would

be precision loss from the encryption algorithm itself.

Table I provides further comparisons of amortized forward

pass/inference times, accuracy, and security level.

TABLE I
COMPARISON OF THIS WORK, NN2 [10], E2DM [32], AND SPHINX [23]

Amortized
inference
time (s)

MNIST
classifica-

tion
accuracy

(%)

Security
level (bits)

This work 0.265 95.7 128
NN2 [10] 40 95.0 80

E2DM [32] 0.446 98.0 80
Sphinx [23] 0.78 98.5 128
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C. Significance

Our experiments demonstrate that implementing homomor-

phic encryption in a distributed learning setting can alleviate its

impact on training time, despite incurring computational costs.

Additionally, since most of the training process time is spent

on performing homomorphic operations during the forward

pass, our framework can efficiently scale up the number

of workers before experiencing diminishing returns. These

returns occur when the network load of managing dozens of

workers surpasses the benefits of dividing the workload.

Furthermore, our results indicate that homomorphic encryp-

tion does not compromise model accuracy. Since real-life data

often contains inherent noise, the loss of precision caused

by encryption does not significantly affect the ability of the

finished model to predict labels. However, it is crucial to set

the correct parameters for the encryption context, as improper

dataset pre-processing and analysis can affect overall security

and training ability.

Our proposed framework represents a significant step to-

wards a practical data privacy solution for small stakeholders

who cannot compromise on security. By generating accurate

models at the expense of runtime, our framework provides a

service that brings homomorphic encryption much closer to

practical use.

VII. DISCUSSIONS

This research encountered several challenges, with the

memory footprint utilized by the homomorphic encryption

scheme being the most significant one. The serialized sample

size increased from 64 bytes to over 400 kilobytes per sample,

leading to a total encrypted dataset size of 4099 megabytes.

While this is manageable for most high-end systems, it can

lead to out-of-memory issues on moderately large datasets

for hosts with limited hardware or workers with low-end

specifications. To resolve this issue, future work can focus on

reducing the memory footprint of the homomorphic encryption

scheme or using physical storage in the design to trade speed

for reliability.

Load balancing will become a more significant issue as

the framework scales up. Our test utilized a fairly uniform

distribution of machines with similar, if not identical, speci-

fications. However, in a production environment, workers are

not necessarily equal in computing power, which can cause

delays as the system waits for slower workers to catch up.

Load-balancing techniques that seek to alleviate this issue are

available today, but it is challenging to apply these without

significant changes due to the size of the training packages.

One potential solution is to have each worker report their

computing power to the server, which then calculates the

proper workload distribution to ensure every worker finishes

at a similar time. This line of work can be used to expand the

framework into a crowd-sourced distributed learning platform.

When using homomorphic encryption, the amount of time it

takes to complete encryption operations is the biggest factor in

runtime. Our research shows that the time it takes to complete

inference is equal to the time it takes to complete network

operations when using 100 workers. After this point, the time

it takes to send each worker their training package becomes

longer than the time it takes to train on it. Future work

can explore ways to optimize the computational overhead of

homomorphic encryption operations. Another way to reduce

the overall training time is to increase the speed of the network

connection.

Dataset encryption at the host becomes an increasingly

significant part of the total runtime as the number of workers

increases. The one-time cost of encrypting the entire 10,000-

sample dataset was an hour in our tests. At the highest test

configuration of 8 workers, this encryption time accounted for

12% of the total runtime. However, dataset encryption only

needs to occur once for a given training problem and can be

reused for training multiple models.

The use of the CKKS scheme introduces a vulnerability that

can lead to a passive attack and the recovery of the secret key,

as described by Li and Micciancio [33]. Cheon et al. proposed

a fix in the form of a decryption-for-sharing operation for

the CKKS scheme that makes sharing the decrypted result

safe [34]. However, this approach can expose dataset labels if

used in plain by workers during loss calculation. To solve

this problem, we present a novel solution that shifts the

responsibility of loss calculation from the worker to the host.

After a forward pass, the worker sends the encrypted result

vectors to the host, who decrypts the result and calculates the

loss using the loss function on the host side. The calculated

loss is then sent back to the worker for backpropagation. By

adopting this approach, we prevent the leakage of raw result

values and thwart chosen ciphertext attacks from malicious

workers by obscuring the values sent back to the worker

behind an undisclosed loss function. Both the server and

workers only have access to encrypted result vectors and loss

values, which do not reveal information about the original

dataset. The security of our framework is based on the strength

of the encryption algorithm. CKKS utilizes ring learning with

errors as its encryption algorithm, which is a type of lattice-

based cryptographic system. With a security level of 128

bits, CKKS is considered quantum-safe against the current

computational capabilities of today’s machines.

VIII. CONCLUSION

As machine learning becomes increasingly prevalent, data

privacy and security concerns are becoming more signifi-

cant. Our distributed learning framework, which incorporates

homomorphic encryption, provides a potential solution to

these concerns. Our experimental evaluation demonstrates that

homomorphic encryption can be used to secure data in a

distributed learning framework with minimal impact on train-

ing times compared to using homomorphic encryption alone.

Furthermore, our framework’s architecture does not hinder the

ability to train an accurate AI model, and we have found that

our model converges to a solution in fewer epochs than other

secure training platforms.

However, the repeated homomorphic operations in the train-

ing process can lead to reduced usability, as our solution takes
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significantly longer to perform the same training process than

unencrypted training.

Future work can focus on expanding the framework’s

security to cover data integrity, availability, or authenticity

and detecting and preventing model poisoning. In addition,

improvements to the homomorphic encryption scheme can

significantly enhance the model’s performance, especially in

the inference stage, by utilizing batch processing.

In conclusion, our framework provides an efficient way

to use homomorphic encryption in machine learning while

preserving data privacy and security. It presents a promising

solution for organizations seeking to use sensitive data for

machine learning while adhering to data security requirements.
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