
Preserving User Privacy from Third-party
Applications in Online Social Networks

Yuan Cheng
ycheng@cs.utsa.edu

Jaehong Park
jae.park@utsa.edu

Ravi Sandhu
ravi.sandhu@utsa.edu

Institute for Cyber Security
University of Texas at San Antonio

San Antonio, TX, USA

ABSTRACT
Online social networks (OSNs) facilitate many third-party applica-
tions (TPAs) that offer users additional functionality and services.
However, they also pose serious user privacy risk as current OSNs
provide little control over disclosure of user data to TPAs. Ad-
dressing the privacy and security issues related to TPAs (and the
underlying social networking platforms) requires solutions beyond
a simple all-or-nothing strategy. In this paper, we outline an access
control framework that provides users flexible controls over how
TPAs can access user data and activities in OSNs while still retain-
ing the functionality of TPAs. The proposed framework specifically
allows TPAs to utilize some private data without actually transmit-
ting this data to TPAs. Our approach determines access from TPAs
based on user-specified policies in terms of relationships between
the user and the application.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access con-
trols; K.6.5 [Management of Computing and Information Sys-
tems]: Security and Protection—Unauthorized access

General Terms
Security

Keywords
Privacy, Online Social Networks, Social Applications

1. INTRODUCTION
To offer richer functionality, many online social networks (OSNs)

have launched social networking platforms that enable third-party
developers to contribute applications to the social network through
the use of APIs (application programming interfaces). With the
support of OSN platforms, third-party applications (TPAs) have be-
come highly popular in a very short period of time.

The emergence of TPAs also poses severe privacy risks to users.
TPAs need to consume users’ and their friends’ data to provide ex-
tra functionality to users. Under the current circumstance, TPAs
usually receive privileges equal to the TPA users with respect to
social graph traversal, and thereby gain access to an abundance of
users’ information regardless of the actual legitimate needs. More-
over, these applications are available via OSNs but are running on

Copyright is held by the International World Wide Web Conference
Committee (IW3C2). IW3C2 reserves the right to provide a hyperlink
to the author’s site if the Material is used in electronic media.
WWW 2013 Companion, May 13–17, 2013, Rio de Janeiro, Brazil.
ACM 978-1-4503-2038-2/13/05.

external servers outside the OSN’s control. Once they acquire the
data, they can use or dispose it in whatever way they want without
user or OSN consent. There is no control regarding the usage of
user data once it is released to the TPA. The developers of TPAs
can aggregate such data and accrue benefit by using or selling the
data. The most common approach adopted by existing OSNs is a
simple all-or-nothing strategy: a user must agree to allow the ap-
plication to access some subsets of her profile information before
installing and using it. Thus, it is difficult for users to know and
control how their information is accessed by those various external
parties. The only choice for the user to not provide such data is to
not use the application. In particular, TPA providers access the con-
tact list of the TPA users and fetch information about the friends of
the users, even though those friends did not install the application
themselves or consent to this access.

Most previous research on access control in OSNs concentrates
on access between regular users in the system, leaving the issues
of TPAs out of scope. However, TPAs do not behave like a regular
user. They have the ability to aggregate a huge volume of informa-
tion from their users and can do anything with the collected data
without any controls or consent from users or OSNs. We believe
OSNs need effective means to prevent privacy leakage for users, in
addition to the terms of services and limitation of their APIs. This
is likely to be in both OSNs’ and TPAs’ interests as more users are
likely to use privacy preserving OSNs and TPAs.

In this paper, we address the issue of inappropriate exposure of
user’s information to TPAs. We present an access control frame-
work that provides flexible and fine-grained controls on how TPAs
can access OSN user’s data. For this purpose, we classify TPAs
into three categories: running outside of OSN, running inside of
OSN, and hybrid where some modules are running inside of OSN
while others are running outside. The fundamental idea of our ap-
proach is to constrain and consume the private information within
the OSN system but only allowing privacy-nonsensitive informa-
tion to be sent outside the OSN for necessary functionality. There-
fore, applications or functions running outside the OSN may only
receive privacy-nonsensitive data, while those running inside may
consume raw private data under the surveillance of the OSN system
but are not allowed to transmit the data outside. We also define a
relationship-based access control policy language to the framework
that allows users to specify how TPAs can access their data in terms
of the relationships among users and applications.

2. BACKGROUND
This section provides an overview of OSN platforms, describes

the privacy issues in those platforms, and reviews the previous lit-
erature on these issues.

723



Table 1: Comparison with previous solutions
Felt [9] Antho. [3] Singh [14] Viswa. [15] Shehab [13] Besmer [4] Egele [8] ours

Communication Intercepter X X X
Information Flow Control X X
Data Generalization X
User Specified Privacy Preference X X X X X
User-To-Application Policy Model X X
Separating Components of Appli-
cation

X X X

2.1 Social Networking Platforms
Many of the popular OSNs have released web APIs to allow

third-party developers and websites to implement their own ser-
vices, which can utilize and aggregate user information and activ-
ities in OSNs. Figure 1 presents a typical architecture of current
social networking platforms, where TPAs are designed in accor-
dance with APIs and can access user data through APIs. Typically,
these applications are integrated in an OSN site but rely on their
own external server for running the application.

The Facebook Platform and Google’s OpenSocial are two of the
leading forces in the business of social networking platforms. The
Facebook Platform [1] is a proprietary software environment for
launching TPAs in Facebook. The core of Facebook Platform is the
Graph API, which forms the primary way of retrieving and posting
data in Facebook. It allows developers to define objects and actions
in the social graph, and to create new instances of objects and ac-
tions. Google’s OpenSocial [2] is an open source cross-platform
competitor to the Facebook Platform for building social applica-
tions. It defines a common API for applications across multiple
websites, through which OSNs can grant applications access to the
social graph as well as messaging service and update feeds. Its
greatest advantages over Facebook Platform is its interoperability
within the context of multiple OSNs.

2.2 Privacy Issues with Current Platforms
On current platforms, for an OSN user to install an application,

a dialog is displayed to her showing that the application requests
an access to a list of her profile data. Different from access con-
trol policies for user-to-user interactions, the user cannot express
her privacy preferences for data that are accessed by applications.
In fact, many OSNs currently only provide an all-or-nothing policy
when it comes to application-to-user interactions, without letting
OSN users specify which information TPAs can access. Thus, even
if the application only needs one piece of profile data, the user has
to agree to grant the application full access to her profile data; oth-
erwise, she cannot use the application at all. Recently, some OSNs
offer users more customized privacy management regarding TPAs
than before, where users are allowed to opt-in or opt-out some cate-
gories of profile data. However, the essential problem still remains.
First, the coarse-grained privacy control does not support users to
specify access control policies for each piece of data users own,
nor does it distinguish different types of actions application can ex-
ercise on data. Second, users are not aware of what kind of data
the application really needs. Applications can still ask for more
data than they really need, which simply violates the principle of
least privilege. We believe it is more appropriate to mediate access
on a per request basis rather than approve access in advance dur-
ing the time of installation. Third, some permissions are given by
user’s friend who installed the application, without user’s knowl-
edge. This poses a serious exposure to those users who are not
willing or interested to use the applications.

Figure 1: Typical OSN Architecture with TPA

TPAs run on their own servers or other hosting services that are
beyond the control of OSN systems. Once applications get user
information, they can aggregate the information for their own use,
or sell it to other external parties. There exists no enforcement to
police how applications and their developers use user data. The
large number of privacy leakage incidents by applications in recent
years raises OSN users’ concerns on this matter, and suggests them
not to completely trust these third-party applications.

It is difficult for user to know and control the various entities who
can gain access to their information and to limit such flow without
losing the various features brought by these third-party entities.

2.3 Related Works
There has been considerable work seeking to resolve the privacy

issues regarding TPAs. Table 1 summarizes the characteristics of
some solutions proposed recently.

All communication between applications and data in OSNs is en-
capsulated by APIs. However, current APIs are not designed with
the purpose of access control in mind, letting TPAs access user
data without obstruction. To prevent TPAs from directly interact-
ing with user data through APIs, several proposed proxy designs
intercept all requests from TPAs, exert users’ privacy preference
on data retrieved from the OSN, and then return the sanitized or
dummy data to TPAs [3, 8, 9]. The enforcement of such designs
varies from server-side proxy to client-side plug-in, according to
the trusted entities the designs rely on.

Singh et al [14] presented xBook framwork to prohibit untrusted
applications from leaking users’ private information. TPAs are
hosted on trusted xBook platform, which confines application exe-
cution and mediates information flow between different application
components. Inspired by xBook, the system proposed by Viswanath
et al [15] enforces sandbox structures on both server and client
sides to restrict information flow from users to application devel-
opers. Our work shares a common design strategy with these two
systems by separating applications into multiple components and
restricting the information flow between components.

A number of researchers seek to support user-specified privacy
preference over what information can be accessed by TPAs. The
collaborative privacy management (CPM) framework [3] allows

724



Table 2: Strategy
Data Classification Strategy

unnecessary & private do not permit
unnecessary & non-sensitive user’s choice

essential & non-sensitive transmittable outside of OSN
essential & private processable within OSN

users to define privacy configurations and share them with others.
In the approach presented by Shehab et al [13], users can choose
to opt-in, opt-out, or generalize the application requested data to
reflect their access preferences for the applications. PoX [8] uses
a dedicated Facebook application to store access control lists for
users, which indicate what application should be allowed to access
what pieces of information. These proposals contrast with our work
in that they do not offer a complete access control policy model for
users to specify their privacy preferences. Besmer et al [4] intro-
duced a new application-to-user policy that restricts application’s
access to user information while still allowing desirable function-
ality, which is most similar to ours. However, in addition to the
policy model, we also provide a framework that separates applica-
tion components for finer-tuned information flow controls.

3. THE FRAMEWORK
In this section, we present an access control framework that en-

forces better privacy preservation for users against third-party ap-
plications. Our goal is to prevent TPAs from learning user’s private
information while still maintaining the functionality of the applica-
tions.

3.1 Overview
As discussed earlier, existing access control mechanism gives

applications too much freedom in accessing user’s information. A
survey conducted by Felt et al [9] indicated that 91% of the 150
top Facebook applications have unnecessary access to user’s private
data, violating the principle of least privilege. On the other hand,
completely limiting the applications from user data or providing
fake data to them may harm the functionality of applications or
even their own business models.

To achieve a balance between application functionality and user
privacy, we first present a taxonomy of user’s information based
on the value for applications and users, as shown in Table 2. User
information can be classified into four categories. The first row in-
dicates data that is inessential for application but of significance to
user privacy. It is definitely unnecessary for TPAs to acquire such
data, thus requests for the data will not be permitted in any cir-
cumstance. If the data is not necessary for running of application
and is not private (Row 2), disclosing it does not breach privacy
and the decision is up to user’s own choice. For data essential for
application, however, we need a special scheme to ensure the func-
tionality without privacy leakage. Unlike other approaches that do
not trust the OSN systems [12], we assume the OSN systems are al-
ways trustworthy with respect to user privacy, but TPA server may
not be. User’s private information should be kept away from these
untrustworthy external servers. Among the data that is essential
for application functionality, some are of less privacy concerns and
thus accessible by untrustworthy external entities (Row 3), while
others are sensitive private information that require proper protec-
tion against external entities (Row 4).

The premise of our idea is that running an application may not re-
quire users’ private information, and even if it requires it not every
function of the application needs the private information. There-

Figure 2: Proposed Architecture

fore, to preserve user privacy and application functionality, our fun-
damental strategy is to leave private data within OSN system and
to allow external servers of TPAs to retrieve non-private data.

3.2 The Design
We introduce an access control framework, which modifies the

current architecture of Figure 1 to accommodate our strategy. As
shown in Figure 2, the architecture of the proposed framework has
a major distinction from the current architecture: in our framework,
applications can be divided into two components, internal compo-
nent and external component. An application requires a set of func-
tional modules. These functional modules can run as either internal
or external components. The modules running as an internal com-
ponent can receive necessary information only through OSN API,
hence are trusted not to transmit any sensitive information to the
TPA server. The modules running as an external component are
managed by the TPA developer, hence not trusted. TPA developers
can decide whether a functional module should be in an internal or
external component based on what kind of data the module con-
sumes and, if users’ private data is used by the module, whether the
users’ private data need to be stored at the TPA server or not. If a
module utilizes privacy sensitive information but the corresponding
application does not need to collect users’ private information in its
server, it should be the TPA developers’ (and even OSN providers’)
interest to let the module reside within OSN as this is likely to at-
tract more privacy-aware users to try this application.

As mentioned earlier, Figure 2 exhibits three different forms of
applications based on the component types used: the one entirely
running inside OSN (e.g., App 1), the one entirely running on exter-
nal server (e.g., App 2), and a hybrid that includes both internal and
external components (e.g., App 3). In the current architecture, OSN
systems only provide APIs for TPAs to access user’s information.
Almost all of the existing TPAs are hosted on their own external
servers, and therefore belong to the second category. However, if
OSNs accommodate our design framework, the majority of TPAs
are likely to operate in the hybrid form where internal components
run the functions that utilize users’ privacy sensitive information
but do not need to store this information at TPA server, while the
remaining functions are kept at external server.

Apart from the separation of application functions, the frame-
work also includes three primary components: reference monitor
(RM), API and policies. In Figure 2, Apps can request certain in-
formation only through APIs which limit the apps’ communication
capability. The RM evaluates the requests received by the APIs
then approves or denies them according to the corresponding poli-
cies. In this framework, application policies are specified by the
resource owner. We will describe our policy model in detail in the
next section.

725



3.3 The Application Components
As mentioned earlier, in this framework, the majority of TPAs

are likely to run in hybrid form, consisting of both internal and
external components. The internal and external components of
an application are hosted on servers with different trustworthiness,
and can access various user information with different privacy sen-
sitivity. Hence, the communications between these components
needs to be precisely managed to prevent unnecessary information
leakage. In the proposed social networking platform, the internal
and external components can communicate with each other only
through OSN-specified APIs which allows only certain types of
pre-defined communications.

Between the internal and external components, we define three
types of communications: communications with system calls, non-
private data and private data. The communication using system
calls is a mechanism used by both internal and external functional
modules for sending a message (e.g., a function call) to other com-
ponents. It is used to trigger and handle specific events, and does
not contain information about users. In this framework, we allow
two-way system call communications between the components. A
non-private data communication refers to a message transmission
between application components where the message contains non-
sensitive information fetched from users, such as keystrokes, mouse
clicks, or puzzle results. This type of communication needs to be
used if the messages that need to be shared cannot be transmitted
using a system call. A communication with private data, on the
other hand, is a message transmission between internal and exter-
nal components that includes users’ private information.

Note that internal modules typically require to access users’ pri-
vate data as that is why they reside inside the OSN. As internal
components reside in the trusted OSN servers, users are more likely
to allow the internal components to access users’ private informa-
tion. Here, we assume all internal modules are evaluated by the
hosting OSN and their functional behaviors (such as what kind
of data can be released to external components) are verified. As
shown in Figure 2, the internal components can be further divided
into four types of modules, based on the criteria shown in Table 3.
In Table 3, internal modules are classified using two main criteria.
The columns show that internal modules can be created/provided
by either OSN provider or TPA developer, while the rows show
two types of communications based on what kind of messages can
be transmitted.

Module Type 1 (M1): OSN systems may offer their own func-
tional modules to fulfill some tasks for applications, such as gad-
gets and widgets. This type of module is trusted as it is created
by the OSN system, and thus most likely to be allowed to access
users’ private information. It can communicate with other appli-
cation components through system calls, but any communication
related to user data is disallowed.

Module Type 2 (M2): Just like M1, this type of module can
receive and send system calls with the components on external
servers, but is not allowed to transmit any customized messages
to the components outside. The difference between M2 and M1 is
that M2 is provided by third-party developers rather than the OSN
system. This can be the case when an application needs an inter-
nal module that is not available by OSN but can communicate with
external component using only system calls provided by OSN API.

The above two modules can be used to perform tasks in which
users’ private information is needed and communication between
internal and external components can be done using system calls
only. One motivating example is the notification sending scenario,
where an external component triggers a request, and then an in-
ternal component can take over and fulfill the job and request job

Table 3: Module Types in Internal Components
OSN provided 3rd-party provided

Communication w/
system calls

M1 M2

Communication w/
non-private data

M3 M4

status information back to the external component without letting
the external component know the information about the actual no-
tification recipients.

Module Type 3 and 4 (M3, M4): In addition to system call, these
two types of module can send privacy-nonsensitive information to
the external parties. For examples, such modules can record users’
keystrokes and mouse clicks during the game, and send them back
to external server. While a sanitized form of users’ private data
could be considered as non-private data and belong in these types,
sanitization issues are outside of this paper’s scope.

We have identified four possible types of modules for the in-
ternal component. While application developers can choose any
combination of them to construct the internal component of their
application, it is also possible to see these types in a hierarchy as
M1 and M2 could be considered more privacy preserving than
M3 and M4 depending on the available system calls. For simplic-
ity, we do not consider any ordering of the modules. The proposed
social networking platform can mediate information flow in any
overt channel between the components, according to user’s poli-
cies. While we recognize there remains a covert channel problem,
we deliberately keep this issue outside the scope of this paper which
is focussed on overt communication.

Theoretically, while there could be modules that do not need to
communicate with external components, we believe this type of
internal modules are less realistic hence not discussed in this paper.
Likewise, one can also consider internal modules that can overtly
transmit users’ private data to TPA server. However, this approach
does not preserve user privacy, hence is not considered in this paper.

4. THE POLICY MODEL
Most OSNs offer access control policies for regulating user-to-

user interactions, which are usually based on relationships between
users in the social graph. Many researchers including ourselves
also proposed a number of relationship-based access control [11]
solutions that can improve the current approach from different as-
pects [5–7, 10]. At the same time, the prevailing approach of ad-
dressing application-to-user interactions in existing social network-
ing platforms is rudimentary and course-grained to say the least.
For example, in Facebook, users now can select what kind of in-
formation they are willing to share or not share with third party ap-
plications in general. But for a specific application, the only thing
users can do is to approve all access the application requests during
the installation stage, or otherwise deny the request and terminate
the installation.

The most unique characteristic that distinguishes OSNs from
other systems is that users and data objects in OSNs are intercon-
nected through different types of relationships in the social graph.
Installing and using an application can be also viewed as an es-
tablishment of a special relationship between user and application.
Hence, it is intuitive to apply relationship-based access control to
govern application-to-user interactions. Inspired by our previous
work about user-to-user interactions [6, 7], we propose a policy
model for controlling application’s access in OSNs in terms of re-
lationships.

726



4.1 Relationship-based Policies
Social graph depicts the relationships between users in OSNs,

and it can be extended to include resources as well. Information
sharing and social interactions among users are typically based on
such graph. Social networking platforms would also benefit from
the social graph by taking advantage of the social relationships
to offer a richer experience for users. The platform would allow
an application to traverse the social graph to access information
owned by the application user’s friends1 through the application
user. Thus, applications are able to reach users that have not in-
stalled the application at all.

In most existing OSNs, access control for user-to-user interac-
tions is based on the topology of the social graph, where granting
access permission is subject to the existence of a particular relation-
ship or a sequence of relationships between the access requester
and the target or the owner of the target, and the access control
policies are specified in terms of such relationships. We can ap-
ply this paradigm of access control to application-to-user interac-
tions by connecting applications to the social graph and considering
application-to-user relationship for relationship-based access con-
trol.

Our framework comes with a policy model that allows users to
specify how applications can access information owned by them-
selves and their friends in terms of the relationships between the
application and the users. The available relationships for users
to choose from include “install” relationship between the applica-
tion and the users, in addition to all other user-to-user relationships
among users in OSNs. Basically, users can use a combination of
these relationships to govern application’s access to resource.

As mentioned earlier, applications can access the friends’ infor-
mation of an application user without consent from the friends, and
sometimes, beyond the application user’s expectation as well. Ef-
fectively, users have delegated the rights to decide which applica-
tions can be trusted to their friends. To resolve the problem, some
OSN sites now offer users the ability to select categories of infor-
mation that can be disclosed to applications that they have not in-
stalled in case their friends use those applications. However, this
mechanism is still far from user’s expectation for fine-grained ac-
cess control. To this end, the proposed framework considers poli-
cies of both the application users and their friends regarding the
application’s access. Although most current APIs only allow appli-
cations to access direct friends of their users, our policy language
actually supports the extension to multiple hops of relationships for
more expressive policies.

4.2 Policy Specification
We model an application’s access request to user information as a

tuple <requester, action, target>, where requester indicates the ap-
plication that launches the access request, action denotes the type
of access the requester wants to exercise, whereas target represents
the target object of the access. A target can be either the user exe-
cuting the application (i.e., application user), the application user’s
friend, or a data object owned by one of them. The set of supported
actions is determined by the API of the social networking platform.
The granularity of target objects is chosen based on the system de-
signer’s decision, possibly varying from data object to data type.

Access control policies for application-to-user interactions are
composed of four elements:

<action, target, (start, path rule), 2ModuleType>,

1Here, by “friends”, we mean people who have any direct user-to-
user relationship with the user, instead of people who specifically
maintain a “friend” relationship with the user.

where action specifies the type of access, and target is an optional
parameter only for access against resource, denoting the resource to
be accessed. It remains blank when the requested access is against
a user.

For the third element, start is the position where access evalu-
ation begins, which can be either the target user indicated in the
request, the owner of the target object (denoted as owner), or the
application requesting access (denoted as requester). A path rule
is composed of one or more relationship paths, with each repre-
senting the required pattern of relationship between the involved
parties in order to grant access. For example, install represents
the relationship between the application and the application user,
“install·friend” denotes the relationship between the application
and the friend of the application user, whereas “∅” indicates no ex-
plicit relationship path but the starting node itself is allowed. Given
a pair (start, path rule), if start is the target user or resourcs owner,
the reference monitor checks if the requester (i.e., application) can
be reached via relationship path specified in path rule. If start is the
requester, the reference monitor then evaluates from the requester
to see the relationship path between the requester and the target
user or resource owner.

The last parameter 2ModuleType indicates the set of application
module types that is allowed to access, where ModuleType is a set
composed of M1, M2, M3, M4 and external. It enables the resource
owner to specify different policies for different application modules
regarding the same pair of action and target. For example, user
Alice may allow some internal modules of an application (see App
3b in Figure 2) she installed to access her birthday, but disapproves
the external component of the application to access (see App 3a in
Figure 2) the same data.

4.3 Examples
Below we show two examples to elaborate how users can use the

policy model to control application’s access in OSNs.
Example 1: App Request Notification. Once a user has installed

and used an application, the application may start sending app re-
quests to the user’s friends or suggesting new applications to the
user. The notification of such requests is annoying to many people.
In general, users usually tend to hide their identities from applica-
tions they do not know. In this case, the following policies may
help user Alice and her friends keep their privacy with respect to
app requests:

• For applications she installed #1: < app request,
_, (target user, install), {M1,M2,M3,M4,
external} >

• For applications she installed #2: < app request,
_, (requester, install·friend), {M1,M2} >

• For applications her friends installed: < app request,
_, (target user, friend·install), {M1,M2} >

The first policy applies to requests such as < AppX , app request,
Alice >, saying that applications she installed are allowed to send
her app requests about activity updates and suggestions for new
applications. The pair (target user, install) expresses the appli-
cations that she installed. The second policy states that only the M1
or M2 modules of the applications she installed are allowed to send
app requests to her friends. Here, (requester, install·friend)
identifies users who are friends of the application user (i.e., Alice).
The last one regulates whether applications her friends installed
can send her notification of app requests. In this case, (target
user, friend·install) identifies the applications installed by Al-
ice’s friends. The last two policies both deny the external com-

727



ponent of the applications to identify users or access users’ infor-
mation who did not have them installed. Instead, the M1 or M2
modules can fulfill the task of sending out such requests without
letting the external part learn the identities of those recipients.

Example 2: Access User’s Profile Information. Among the data
that users put or generate in OSNs, some contains private informa-
tion about users and should be safeguarded within the trusted OSN
environment, while others may be appropriate for less trustworthy
parties to access. For example, Bob prefers not to release his date
of birth, relationship status, and email address to game applications
he or his friends installed. On the other hand, the game application
requires his age for customer survey, and normal key strokes and
mouse moves during playing for proper functionality. To balance
privacy and functionality, he expresses his preference through the
following policies:

• Policy about Bob’s date of birth:
< access, dateofbirth, (owner, install), {M1,M2} >

• Policy about Bob’s key strokes:
< access, keystrokes, (owner, install), {external} >

• Policy about Bob’s email address for applications his
friends installed: < access, emailaddress,
(owner, friend·install), {M1,M2,M3,M4} >

The policy about Bob’s date of birth allows the M1 and M2
modules of the application to access the data but denies any re-
quest from other internal modules and the external component. Key
strokes in the game contains information that may need to be pro-
cessed (possibly with significant computation) that is not likely to
be done within OSN systems but more likely to be done at TPA,
therefore is allowed to be accessed by the external component of
the application. Similarly, the third policy indicates that only the
M1-M4 modules of the applications that Bob’s friends installed are
allowed to access Bob’s email address. This policy is used together
with his friend’s policy when an application his friend installed re-
quests to access his email address. Since there is no overt flow
of private information between the internal modules and external
components in the proposed framework, email address that the in-
ternal component accesses is not going to be transmitted to the ex-
ternal component.2

5. CONCLUSIONS
We presented an access control framework for social network-

ing platforms, preventing users’ private information from leaking to
external parties. Our design splits third-party applications into in-
ternal and external components, allowing the internal components
to access private information but keeping it away from the external
ones. We provided a simple policy model for application-to-user
policies to regulate application’s access. Users can specify different
policies for different components of the same application, enabling
more flexible and finer-grained control. Though the proposed ap-
proach does not eliminate privacy issues completely, it offers users
greater controllability for their privacy against TPAs while allowing
necessary features for the applications.

2While these policies could be used to control an application’s ac-
cess to user data, in real world system, the similar policies as a
whole can be used to evaluate an application’s usages on a user’s
private data at the time of the user’s initial access request to try out
the application. If the data usages of the application modules sat-
isfy the user’s policies, the user’s access to the application could be
allowed. Otherwise, OSN may deny the user’s request or warn the
users while showing which policies are violated by the application.

Acknowledgement
This research is partially supported by grants from the National
Science Foundation and the State of Texas Emerging Technology
Fund.

6. REFERENCES
[1] Facebook platform.

http://developers.facebook.com/.
[2] Opensocial. http://opensocial.org/.
[3] P. Anthonysamy, A. Rashid, J. Walkerdine, P. Greenwood,

and G. Larkou. Collaborative privacy management for
third-party applications in online social networks. In
Proceedings of the 1st Workshop on Privacy and Security in
Online Social Media, 2012.

[4] A. Besmer, H. R. Lipford, M. Shehab, and G. Cheek. Social
applications: exploring a more secure framework. In
Proceedings of the 5th Symposium on Usable Privacy and
Security, SOUPS ’09, 2009.

[5] B. Carminati, E. Ferrari, and A. Perego. Enforcing access
control in web-based social networks. ACM Trans. Inf. Syst.
Secur., 13(1), 2009.

[6] Y. Cheng, J. Park, and R. Sandhu. Relationship-based access
control for online social networks: Beyond user-to-user
relationships. In Proceddings of the 4th IEEE International
Conference on Information Privacy, Security, Risk and Trust
(PASSAT), 2012.

[7] Y. Cheng, J. Park, and R. Sandhu. A user-to-user
relationship-based access control model for online social
networks. In Proceedings of the 26th IFIP Annual WG 11.3
Conference on Data and Application Security and Privacy
(DBSec ’12), 2012.

[8] M. Egele, A. Moser, C. Kruegel, and E. Kirda. Pox:
Protecting users from malicious facebook applications.
Computer Communications, 35(12), 2012.

[9] A. Felt and D. Evans. Privacy protection for social
networking apis. In Proc. of Workshop on Web 2.0 Security
and Privacy (W2SP ’08), 2008.

[10] P. W. Fong. Relationship-based access control: protection
model and policy language. In Proceedings of the first ACM
conference on Data and application security and privacy,
2011.

[11] C. E. Gates. Access control requirements for web 2.0
security and privacy. In Proc. of Workshop on Web 2.0
Security and Privacy (W2SP ’07), 2007.

[12] M. M. Lucas and N. Borisov. Flybynight: mitigating the
privacy risks of social networking. In Proceedings of the 7th
ACM workshop on Privacy in the electronic society, WPES
’08, 2008.

[13] M. Shehab, A. Squicciarini, and G.-J. Ahn. Beyond
user-to-user access control for online social networks. In
L. Chen, M. Ryan, and G. Wang, editors, Information and
Communications Security, volume 5308 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2008.

[14] K. Singh, S. Bhola, and W. Lee. xbook: redesigning privacy
control in social networking platforms. In Proceedings of the
18th conference on USENIX security symposium, SSYM’09,
2009.

[15] B. Viswanath, E. Kiciman, and S. Saroiu. Keeping
information safe from social networking apps. In
Proceedings of the 2012 ACM Workshop on online social
networks, WOSN ’12, 2012.

728




